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The Complexity of Discourse®

Paul Kockelman
Columbia University, New York

ABSTRACT

An entropy-based measure is used to calculate the complexity of discourse patterns. This
measure of complexity takes into account both the number of patterns {possibly
generated), as well as the frequency of each pattern (actually instantiated). The discourse
patterns are modelled as random walks in a multi-dimensional and value-weighted space.
The multiple dimensions are theoretically specifiable within the framework of
conversational analysis (e.g. number of moves, number of participants, types of
adjucency pairs, ete.). And the weighted values are empirically measurable within a
corpus of texts (e.g. relative frequency participants take the floor, refative frequency first
pair-part is a command versus a question, relative frequency an embedding oceurs, ete.).
The way complexity correlates with various social and discursive factors is described. And
the way this method may be extended to analyse successively more complicated patterns
is detailed.

1. INTRODUCTION: MEASURING COMPLEXITY AND
MODELLING CONVERSATION

An entropy-based measure is used fo calculate the complexity of
discourse patterns. This measure of complexity takes into account
both the number of patterns (possibly generated), as well as the
frequency of each pattern (actually instantiated). The discourse
patterns are modelled as random walks in a multi-dimensional and
value-weighted space. The multiple dimensions are theoretically
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2 P. KOCKELMAN

specifiable within the framework of conversational analysis (e.g.
number of moves, number of participants, types of adjacency pairs,
etc.). And the weighted values are empirically measurable within a
corpus of texts (e.g. relative frequency participants take the floor,
relative frequency first pair-part is a command versus a question,
relative frequency an embedding occurs, etc.). The way complexity
correlates with various social and discursive factors is described. And
the way this method may be extended to analyse successively more
complicated patterns is detailed.

While the physical nature of entropy is obviously outside of the scope
of this essay, the core ideas and fundamental equations go back to the
physicist Ludwig Boltzmann (1877; and see Reif, 1965; Tolman, 1979).
Linguists familiar with Shannon’s classic work (1948) on the mathema-
tical theory of communication should recognize several equations so far
as they were originally borrowed from statistical physics. That said, no
targe-scale metaphysical claims are being made about the entropy
(Boltzmann) or infermation (Shannon) of conversational patterns. Nor
will any of the more modern accounts of complexity be taken up, such as
the work of Brooks and Wiley (1988), Kauffman (1993), and Simon
(1996), inter alia. Rather the claim is quite mundane and technical: the
mathematical formalism used by physicists to calculate the entropy of
thermodynamic systems is a useful way to calculate the complexity of
discourse patterns. Usefulness, rather than truthfulness, is the operative
term here. No time will be spent arguing that an entropy-based measure
is a good measure on logical or a priori grounds. Rather, the utility of
such a measure will be demonstrated simply by using it. In particular, the
calculations undertaken in this essay will show that such a measure is
relatively easy to apply, simple to calculate, unambiguous to interpret,
and intuitively correct.

While it would be relatively straightforward to write computer
programs to model more complicated sequencings of conversational
actions (taking into account repair, overlap, openings, and so forth), such
an approach has not been taken here. Rather, the central concern has
been Lo obtain, wherever possible, analytic solutions ~ mathematical
equations which are relatively simple to derive and relatively transparent
to interpret. The random-walk model of conversation developed here
matches these concerns. As will be seen, by slowly adding more and more
dimensions to this model, the complexity of more and more elaborate
kinds of discourse patterns may be measured — while still maintaining this
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ethos of derivability and transparency. While the maths itself involves
only well-known statistical considerations and algebra, the essay
proceeds cumulatively — such that even the least mathematically-inclined
linguist should be able to follow all the steps.

In the rest of Section I, this entropy-based measure of complexity will
be introduced. And in Section 2, the random-walk model will be
developed, and this measure applied to it. '

1.1 Simple Systems

When we measure the complexity of a given system, we are measuring the
degree of freedom offered by the system: the more formal possibility (i.e.
the more states the system could be in), and the more equally distributed
these forms are with respect to actual frequency (i.e. the more evenly the
system shows up in each of its states), the more complex a system.
Loosely speaking, what is a “‘degree of freedom” from the standpoint of
the system 18 also a “degree of uncertainty™ from the standpoint of the
observer of that system. That is, complexity is also a measure of the
degree of unpredictability of a system: how uncertain we are as to what
state it will show up in on any given occasion. To take an example from
dicing: assuming a die is unbiased (each side is equally likely to come up),
the more sides it has the greater its complexity; and, assuming a die has a
particular number of sides, the less biased it is the greater its complexity.
These are the essential ideas underlying an entropy-based measure of
complexity. ‘

To mathematically formulate these core ideas, picture a die with N
sides, whose complexity we would like to calculate. Note first that we are
not interested in the complexity of the die itself (as a physical object with
mass, temperature, volume, etc.). Rather, we are interested in the
complexity of its cutcomes when rolled. That is, we are interested in the
complexity of its probability distribution, as a system which realizes
certain states with certain frequencies. Moreover, rather than consider
the outcome of a single die, it is best to consider the average outcome of
an ensemble of similar dice. In this way, it is best to imagine a very large
number of identical dice being rolled at once. Given such a representative
ensemble of similar systems, we may ask what percentage of the systems
rolled a one, what percentage of the systems rolled a two, and so forth.
That 1s, to calculate the complexity of a given system, we must know the
relative frequency (given some ensemble) of each realizable state (given
some system).
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In particular, if there are N sides of a potentially biased die, whose
frequency distribution is given by

P = {P[, P, P30, PN} (1.1)

where pormalization reguires that

N |
S Pi=Pi P+ Pyit+ Py=1 (1.2)

=1

then the actual complexity of this die, when measured in bits, is given by
N

Cact T’“’—Zpiiogzpi' (13)
py

The actual complexity of a given system thereby turns on a weighted
summation, over possible states, of actual frequencies. This is the core
equation,

As will be seen, this formulation of complexity has a number of
interesting properties. For example, the complexity of a given system is
maximum when each formal possibility is equal in frequency.
(This should make sense if complexity is a measure of the uncertainty
of our knowledge of the state of a system: the more biased a die, the
more predictable a die, the less complex a die.) In particular, to say all
states are equally frequent is to say that, if there are N states, then each of
their frequencies is 1/N. This means that Equation (1.1) is such that
P;.1/N for all i. In such a scenario, the maximum complexity of an
unbiased die with N sides may be calculated using Equation (1.3),
such that

N
Conax = WZ 1/Niogy 1/N = —N/Nlogl/N = —log, /N = log, N.
i=1

(1.4)

That is, the maximum complexity of a system increases logarithmically
with the number of states of that system.
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As is well known, a logarithm (such as log,NV) is a very very slowly
increasing function of N; it has a zero at N == 1; it is negative for N < 1: it
is undefined for N < 0; and it asymptotically approaches negative infinity
as N approaches zero. These properties should accord with one'’s
intuitions. For example, it is nearly impossible to imagine a die with less
than one side; and, the complexity of a die with only one side would be
zero: one knows exactly how the die will turn up on a given occasion.
Moreover, given the ever-decreasing slope of the logarithmic function
(whose derivative is proportional to 1/N), the difference in complexity
between a die with two sides and a die with three sides is much larger
than the difference in complexity between a die with 12 sides and a die
with 13 sides. Finally, it should be emphasized that when we say
108,50 == 5.64, we are saying that 2°%°=50, as per the definition of a
iogarithm, and as per our choice of base 2, such that our unit is the bit.
This also emphasizes the fact that a bit is just a unit of measure: we could
just as easily measure complexity using decimal digits (base 10), natural
units (base €), and so forth. There is nothing inherently binary about
complexity anymore than the use of a metre stick means there is
something inherently decadic about length.

As may be seen from Equation (1.4), the maximum complexity of a
given system is only a function of the number of possible states that the
system can be in; whereas the actual complexity, given by Equation (1.3),
is a function of both the number of possible states and the relative
frequency with which it is found in each of these states. A useful measure
of the organization of a system (or the biasing of a die) is the difference
between maximum complexity and actual complexity (Brillouin, 1962;
Brooks & Wiley, 1988; Layzer, 1988). In particular, we may define the
organization of a given system as

N
0 = Cmax — Lger = Eng N+'Z PfIOgZ Pi- (15)

fuz]

In other words, to say a System is organized, is to say that its actual
complexity does not “tap” its maximum complexity: it is not using its
states as equally frequently as it could. Loosely speaking, then,
organization is untapped, dispreferred, or prohibited compiexity. It
usually arises because some external constraints have been imposed on
the system (for example, the edges of a die have been filed, or weights
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have been added to its sides), such that the system does not visit each of
its states with equal frequency. ‘

The preceding formulas, and underlying ideas, may bg exel.nphﬁe'd by
appeal to a system of particular interest to iingmst_s: mﬁectmngl
paradigms consisting of morphologically-encoded meanings. That is,
just as a die has a certain number of sides (with a certain degrt_ae of
relative biasing), a paradigm has a certain number of values (with a
certain degree of relative markedness). For example, suppose the system
at issue is the simplest person paradigm with three values: ﬁrst~persgn,
second-person, third-person; and suppose that, in some representat.we
sample of discourse, these values were realized with the foliov&ffi'ng
frequencies: 20%, 10%, 70%. Using Equation (1.1), the probability
distribution for this system would be

P=1{02, 0.1, 0.7}. (1.6)

“This is suitable normalized, as per Equation (1.2). Using this c}istributio_n
in conjunction with Equation (1.3), the actual complexity of this
paradigm is given by

N
Cfm‘ = ZP' lOgQ P;
=
= —0.210g,0.2 — 0.1log; 0.1 — 0.7log, 0.7 = 1.16 bits. (1.7)
Using Equation (1.4), the maximum complexity of this paradigm is
given by
Cpuax = 102, 3 = 1.58 bits. (1.8)
Finally, using Equation (1.5), the organization of this paradigm is
given by
O = Chuxe = Cuer = 1.58 — 1.16 = 0.42 bits. (1.9)

The relevance of this example should be clear. First, just as in the case
with dicing, we find the following intuitively correct correlatiorllz
assuming that all values in a paradigm are evenly markgd (each is
equally likely to occur in discourse), the more values a paradigm has the
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greater its complexity; and, assuming a paradigm has a particular
number of values, the more evenly marked these are (as evinced in their
relative frequency of usage), the greater its complexity. Second, given the
fact that actual complexity turns on both the number of states and the
relative frequency of each state, the calculation of linguistic complexity
requires that we attend to discursive frequency as much as grammatical
structure, parole as much as langue. And third, as is well known since the
work of Zipf (1935) and Greenberg (1966), linguistic forms do not occur
with equal frequency because of the relative markedness of the semantic
features they encode and the pragmatic functions they serve (as well as
the physical properties of the forms which encode). Organization, as the
difference between maximum and actual complexity, is therefore a way of
measuring the relative markedness of paradigmatic values in regards to
semantic features and pragmatic functions — or value in the broadest
sense. That is, semantic features and pragmatic functions are the
linguistic equivalent of constraints on a system. In short, grammatical
complexity ultimately turns on the formal encoding of functional
specificity (morphosyntax), the frequency of formal tokening (discourse),
and the featural and functional mediation of frequency (semantics and
pragmatics).

To conclude, it should be stressed that such an entropy-based measure
may be applied to any system whose states may be described with a
probability distribution. Whether it is a die being rolled in a game, a verb
being inflected in an utterance, or a turn being taken in a conversation is
immaterial. Moreover, whatever the system at issue, the states are being
treated as distinguishable — to the sensory perception of an observer, to
the strategies of actors, to the norms of an institution, to the score of a
game, etc. This is to highlight the fact that complexity of outcome is
ultimately dependent on both the frame of relevance and degree of
resolution with respect to which outcomes are considered. There is no
way to account for complexity that is observer-independent, actor-
neutral, or meaningfully-autonomous. Ultimately, then, for a compara-
tive approach to complexity, the states must be types — relatively
recognizable and repeating tokens, whose relevance and resolution
depend on a typology, itself grounded in a particular theory,

In what follows, then, when speaking of a measure of complexity, we
mean this entire means - turning on form, frequency, feature, and
function; dependent on a frame of relevance and a degree of resolution —
of calculating meaningfully organized complexity.
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1.2 Systems Consisting of Simuitaneousty Unfolding Subsystems
So far the systems considered have been relatively simple: either one die
(with a certain number of sides, which may be more or less biased); or
one paradigm (with a certain number of values, which may be more or
less marked). With the equations already provided, it is easy to calculate
how the complexity of such systems may change as a function of the total
number of states and the relative frequency of each state. Before moving
on to the complexity of discourse patterns, it is worthwhile calculating
the complexity of slightly more complicated systems: first, Systems which
consist of a number of simultaneously unfolding subsystems (such as a
roll with more than one die, or constructions with more than one para-
digm); and second, systems which consist of a number of sequentially
unfolding subsystems (such as games with more than one roll, or
utterances with more than one construction).

in the case of systems which involve more than one die, the
mathematical formalism introduced above may be easily extended. One
merely considers a system which consists of several smaller subsystems:
for example, all the possible outcomes of M dice, each of which has N
stdes. To calculate the complexity of such a system, we just count over ali
the possible states (of the total system), with the assumption that each of
these states is equally relevant to the system at issue, the actors implicated
in it, or the observers of it. For example, in the case being considered
here, we are supposing that the dice are distinguishable (say, one is red
and the other green), such that a roll of | on one die and 2 on the other is
treated as a different outcome from a roll of 2 on the first die and 1 on the
second die. In particular, if there are M distinguishable dice, each of
which has N sides, then a system consisting of all M dice rolled at once
has N possible states. This means that the maximum complexity of the
total system is given by

Chox = Zogg NY = lng(N XNx- % N)
=logy N+logy N+ +logy N = Mlog, N. (1.10)

That is, the maximum complexity scales linearly with the number of dice
in a roll, and logarithmically with the number of sides of each die. And
note that Equation (1.10} reduces to Equation (1.5) when M=1.
Similarly, in the case of linguistic constructions, maximum complexity
increases iinearly with the number of paradigms in a construction, and
logarithmically with the number of values in a paradigm.
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Another way to say all this, as evinced in the middle steps of Equation
(1.10), is that the maximum complexity of the sum of the subsystems is
equal to the sum of the maximum complexities of the subsystems. This is
a key property of complexity, and one which is quite general.
In particular, if a system consists of A/ simultaneously unfolding
subsystems, then the maximum complexity of this system is given by

L .
Cnmx - Cma.\'

O A O CH

max max Higx”

(1.11)

And, as was implicit in the definition of organization given in Equation
(1.5), the actual complexity of a system is always less than or equal to its
maximum complexity. That is, the following inequality holds, essentially
by definition:

C(t{'f S Cﬂ'l(l.\' . ( ]. . 12)

Now just as the sides of a single die may be biased (or the values of a
single paradigm may be marked), the sides of simultaneously rolled dice
may be correlated (or the values of co-occurring paradigms may be
dependent). For example, not only does first-person have a different
frequency than second-person and third-person (hence, the system
exhibits markedness), but the relative frequency of first-person is different
depending on the current value of co-occurring paradigms - such as
whether number is singular or plural, or whether tense is present or past
(hence the system exhibits dependency). Loosely speaking, and in a
Saussurian idiom, markedness is a constraint imposed upon an axis of
selection (which increases paradigmatic organization); dependency is a
constraint imposed upon an axis of combination (which increases
syntagmatic organization). Jjust as the relative markedness of values
within a single paradigm reduces the actual complexity of the paradigm,
as per Equation (1.12), the relative dependence between values of co-
occurring paradigms reduces the actual complexity of the construction.
in other words, organization increases not just with increased biasing of
intra-subsystem values, but also with increased correlation of inter-
subsystem values.

This means that a more general set of relations holds. Firstly, the
generalization of Equation (1.11) may be expressed as follows:

Cz;%;2+-~-+M (rncorrelated) - C[ + C2 R CM

act act act’

(1.13)
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A : That is, when the simuitaneously unfolding subsystems of a system are

- uncorrelated (with each other) but potentially biased (within themselves),
the actual complexity of the system is egqual to the sum of the
complexities of the subsystems; and secondly, when the simultaneously
unfolding subsystems of a system are potentially correlated (with each
other) and potentially biased (within themselves), the actual complexity is
usually less than the actual complexity of the same subsystems that are
uncorrelated. In other words, ‘ :

Cl_,_2+...+M (correlatedy < Cl+2~i—---+M (“”"0""‘?"““’[{). (1‘14)

act act

In short, biasing and correlation {or markedness and dependency, in
the case of grammatical constructions) reduce the actual complexity of a
system from its maximum complexity. This should come as no surprise:
biasing and correlating are ways of organizing a system, and they count
as constraints that have been imposed upon a system. The more
constraints on a system, the more organized a system, the more
predictable a system, the less complex a system.

1.3 Systems Consisting of Sequentially Unfolding Subsystems

Having analysed the complexity of a single die (with a certain number of
sides and a certain degree of biasing), and having analysed the complexity
of a system of dice (with a certain number of dice and a certain degree of
correlation), we may now turn to the complexity of a certain number of
rolls of a die (or rolls of a system of dice). That is, we may turn to
systems consisting of sequentially unfolding subsystems. To take the
simplest example -~ one which has incredibly broad implications -
consider a die with two sides, or what is in essence a coin. To review: if
this coin were unbiased, then the maximum complexity of a single flip
would be log,2, or 1 bit, following Equation (1.4). Were this coin biased,
such that heads had a relative frequency of p, and tails had a relative
frequency of 1 — p (where p=£1/2), then the complexity of a single flip
would be given by Equation (1.3), and would lie somewhere between 0
bits and 1 bit, depending on the amount of biasing. Were we to flip
several unbiased coins, then the complexity of the distribution would be
M bits, where M is the number of coins flipped, following Equation
(1.10), and so forth. All this is easily understood given the preceding
discussion. What is at issue now, however, is the complexity of a system
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which consists of many flips of a single coin (or, more generally, many
rolls of a set of dice).

Consider N tosses of a biased coin. With each toss, the coin has a
probability p of coming up heads and a probability 1| — p of coming up tails
{(where p=1 ~— p=1/2 in the case of an unbiased coin). After a total of N
tosses, we would like to know the probability that #, of the tosses came up
heads, and no= N — »; of the tosses came up tails. Analogously, consider
N steps of a tipsy sailor. With each step the sailor has a probability p of
going to the right, and a probability 1 — p of going to the left. After a total
of N steps, we would like to know the probability that n,; of the steps were
to the right, and ny = N — #; of the steps were to the left. The answer is the
famous binomial distribution (see Reif, 1965, for a derivation):

Wyin) = (’f)pn;{l ——p)N_"' (1.15)

where

N NI
(m) SN — Al (1.16)

As a probability distribution, it is suitable normalized, such that

N N
S Wrim)=> (2{)!’”'(1 ~p)N =1 (1.17)

I’l|m0 mm(}

Moreover, it has an average, given by
N

N
A=y Wyln)m=>_ (i\:r)pni(i =p)" ™" ny =Np. (1.18)

H|=0 ny=0

And it has a dispersion, given by

(Am)’ = (my ~ 7)) = Np(1 ~ p). (1.19)

As will be taken up below, this distribution may often be approximated
by a Gaussian (or beil-shaped curve): the average corresponds to the
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location of the maximum of the distribution; and the square-root of the
dispersion {or root-mean-square deviation} is a good measure of the
width of the distribution around the maximum point.

As with any probability distribution, we may calculate the complexity
of a binomial distribution with the usual formula. In particular,
foliowing Equation (1.3), we find

Cn(p)

N
— Z WN(nl) Ing WN(H;)
=0

m-—z( ) p)”"“’“iogg( A]’ )p"i(f-_p)"“”*. (1.20)

=0

Equation (1.20) is graphed for a range of values in Figure 1.1. As may
be seen, complexity is a slowly increasing function of N. For a given N,
complexity is maximum when p=1-—p=1/2. And complexity is
symmetric with respect to p and 1 — pr that is, the complexity of

45
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Fig. 1.1. Complexity of binomial distribution.
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a distribution with p=1/3 and [ — p=2/3 is the same as the complexity
of a distribution with p=2/3 and 1 — p==1/3. In other words, as long as
the overall biasing is the same, whether it is biased towards tails or heads
is immaterial. '

If one were to move from a system consisting of successive flips of a
biased coin to a system consisting of successive steps of a tipsy sailor,
Equation (1.20) is a measure of the relative complexity of the random
walk taken by the tipsy sailor. For example, the more steps a tipsy sailor
takes, the more complex the overall path taken. And a tipsy sailor dead-
set on moving to the right (such that p = 1) is much less complex than
one who is equally likely to go to the right or the left (such that
p =1 —p = 1/2), Indeed, if we think of increasing sobriety as leading a
sailor to move in one direction (p approaches 1), and tipsiness as leading
a sailor to move in either direction (p approaches 1/2), then a tipsy sailor
is a complex sailor (whose behaviour is relatively unpredictable), whereas
a sober sailor is a simple sailor (whose behaviour -is relatively
predictable). Or, from the standpoint of organization, which is equal to
the difference between maximum complexity and actual complexity, the
path of a tipsy sailor is relatively disorganized, and the path of a sober
sailor is refatively organized.

As 1s well known (see Reif, 1965, for a detailed derivation}, in the limit
of large N (when p and | — p are not too small), the binomial distribution
may be approximated by a Gaussian distribution. In particular, one finds
that Equation (1.15) may be approximated by

m(aq «~Np}2
exp 2rpi-p

2rNp(l — p)’

Just as we may approximate a binomial distribution by a Gaussian
distribution {and hence by a continuous function), we may also calculate
the complexity of a Gaussian distribution, which is a good approxima-
tion of the complexity of a binomial distribution in the limit of large N
(when p and 1 — p are not too small). As derived in Shannon (1963,
pp. 88-89), for the case of “information”, this invoives an integral rather
than a sum, and yields

Wyim) = W{(N,n) = Jor Np(1—=p) > 1. (1.21)

Cy(p) 7= C(N, p) = logy /2reNp(1 — p), for Np(1 —p) > 1. (1.22)
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: This, ther, is an analytic solution to the complexity of a random walk,
and hence a useful approximation of Equation (1.20). As per the
" discussion following Equation (1.20), but now with analytic detail, the
complexity of a random walk increases with the logarithm of the square
root of N; is maximum, for a given N, when p=1 - p=1/2; and is
symmetric with respect to p and 1 — p. Indeed, as may be seen by
comparing Bquation (1.19) with Equation (1.22), the complexity of
Gaussian approximation to a binomial distribution Is essentially the
logarithm of the root-mean-square deviation. Thus, the greater the width
of a distribution, the greater the complexity of the distribution: an
extremely narrow distribution only has a significant probability for a
smell number of states, paths, or outcomes - and hence is maximally
organized and minimally complex. The path of a sober sailor, and thus
an organized sailor, is essentially known in advance.

These then are the essential features of the complexity of sequentially
unfolding subsystems, as exemplified by successive flips of a biased coin
or successive steps of a tipsy sailor. Two additions should be made before
concluding this section. First, so far we have been focused on sequentially
unfolding subsystems which themselves have only two states (heads or
tails, right or left). The reasoning leading to Equation (1.15) is readily
generalized for sequentially unfolding subsystems of any number of
states. For example, rather than flip a coin we might roll a three-sided
die. In such a scenario, the probability distribution is given by

M M 12 N —ny
miml (N =7 —m)iF1 P2 (1~ p1—p2) o (1.23)

Win(n,m) =
This is the probability that, out of a total of N rolls, n; rolis come up 1,
ny rolls come up 2, and N —n; —n, rolls come up 3, where the
probability of rolling a 1 is given by p,, the probability of rolling a 2 is
given by p,, and the probability of rolling a 3 is given by 1 — p; — pa.
This is suitably normalized such that

N N-n

DO Win,m) = 1. (1.24)

=0 #y=0

Moreover, it too may be approximated by a Gaussian; and it too may
have its complexity calculated. Such results, and their generalization
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(for, say, N rolls of a four-sided die, N rolls of a five-sided die, and so
forth), will come in handy in the next section.

Second, we may focus on the complexity of sequentially unfolding
subsystems which themselves consist of simultaneously unfolding
subsystems. That is, we may bring the results of this section to bear on
the resulis of the preceding section. Imagine, for example, that a number
of different-sided dice are thrown with every turn. Or, imagine that a
grammatical construction involving five different paradigms (say, all
operators with scope over verbal predicates: illocutionary force, tense,
mood, polarity, aspect) is successively instantiated a certain number of
times in a given narrative. Indeed, to take the most relevant example for
modelling conversation, imagine three coins are flipped with every turn.
Or, equivalently, but couched in terms of human action, imagine that the
random walk of a sailor takes place in three dimensions (north versus
south, east versus west, and up versus down}. Or, even more
picturesquely, imagine that, with each step a tipsy satlor has three choices
to make, and hence three kinds of actions to simultaneously undertake:
whether to move to the right or left, whether to adjust his cap or tighten
his belt, and whether to sing or shout. Given the fact that independent
probabilities multiply (and the fact that, for the moment, we are treating
the simultaneously undertaken actions as uncorrelated), the probability
distribution of such a system is given by

W (ng,n2,n3)

= W) Wi (na) Wii(ns)

N N
. (N)p"“(i __P)Nwru ( )qﬁg(l . q)Nw:ig( )I‘"s(l _ r}Num. (125)
) I 13

That is, Equation (1.25) shows the probability that, out of N flips of
three coins, the first coin comes up heads n; times (the sailor moves to the
right), the second coin comes up heads n, times (the sailor adjusts his
cap), and the third coin comes up heads #n; times (the sailor sings), where
p is the probability that the first coin comes up heads, ¢ is the probability
that the second coin comes up heads, and r is the probability that the
third coin comes up heads. It is suitably normalized, such that

N N N

DD D W ) =1 (1.26)

ay=0 ny=0 ny=0
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‘Equation :1:.25). 131"ééisi'l'y'appfoxilnated using a Ga_us_sian distributipn.
Indeed, it is just thé product of three equations s.un;.!ar to Equation
(1.21), and ‘the complexity of such a Gaussian distribution is easily
calculated. Indeed, as per the discussion regarding Equation (1.13), just
“"ds the complexity of a grammatical construction involving a set of
. independent paradigms is just the sum of the complexities of the
independent paradigms, the complexity of a random walk in three
(uncoupled) dimensions is just the sum of the complexities of each
individual dimension. In particular, in the limit that Np(l —p>1,
Ng(l — g)> 1, and Nr(l — 1) > 1, we find

C(N,p,¢,7) =logy /2neNp(l — p) + log, /2neNg(1 — ¢)
+log, +/2neNr(l — r). (1.27)

Equations (1.25)-(1.27) may be generalized for random walks in any
number of dimensions. Moreover, they may be used in conjunction with
the generalization of Equation (1.23), such that these simultaneously
unfolding subsystems may themselves each have any number of states.

Having detailed a method of calculating complexity that is applicable to
a wide variety of systems, we may now turn from the complexity of
solitary sailors taking steps home from a bar to the complexity of social
speakers taking turns in a conversation. As will be seen, the discursive
patterns evinced in such conversations are easily modelled as random
walks in coupled, multi-dimensional, value-weighted spaces,

2. THE COMPLEXITY OF DISCOURSE: APPLYING THE
MEASURE TO A MODEL

In this section a model of discourse is used which loosely follows the
ideas of conversational analysis (cf. Sachs et al., 1974; Goffman, 1981;
Schegloff, 2005). The basic tact is to use a model of discourse patterns
that is highly constrained, such that the calculations are relatively
tractable, and the logic relatively transparent; yet, at the same time to use
a model of discourse patterns that is easily generalized, such that the
formalism may be readily extended to more elaborate and empirically
realistic patterns. As will be seen, the best way to do this is to model
discourse as a random walk. Within such a broad metaphor, the number

THE COMPLEXITY OF DISCOURSE 17

of moves made in a conversation (or any sequence of moves within a
conversation) is analogous to the number of steps taken in a walk. The
number of participants and adjacency pairs is analogous to the
dimensions in which one may step. And the relative frequency that one
participant takes the floor (rather than another), or that one adjacency
pair is used (rather than another), is analogous to the probability thgt a
step is to the right or to the left. Depending on the kind of conversation
to be modelled, such properties may be varied, added, or coupled, in
increasingly complicated, vet analytically tractable ways.

In the most basic example, we will calculate the complexity of a
conversational sequence of N moves, undertaken by two participants,
when there are two types of adjacency pairs (say, question-answer and
command-undertaking). One might imagine the simplest kind of
language game undertaken by a diner and a waiter. To these basic
parameters (number of moves, number of participants, number of
adjacency pairs), there are three key variables.

First, whenever the floor is open, there is the probability p that
participant I makes a move versus the probability 1 — p that participant
2 makes a move.

Second, whenever the move at issue is a first pair-part, there is the
probability ¢ that such a move is a question versus the probability | — ¢
that such a move is a command.

Third, whenever the move at issue is a response to a first pair-part,
there is the probability ¢ that it is the preferred second pair-part (for
example, a question is followed by an answer) versus the probabliiit'y
I — ¢ that an embedding occurs, such that another adjacency pair is
inserted (for example, a question is followed by a question).

As an example of a sequence with four moves, involving two
participants, two adjacency pairs (both of which are question-answer
couplets), and one embedding, we may turn to the classic paper by Sachs
et al. (1974, p. 702):

Anna: Was last night the first time you met Missiz Kelly?
Bea: Met whom?

Anna: Missiz Kelly.

Bea: Yes.

Using the entropy-based measure outlined in Section 1, not only can
we see how the complexity of discourse varies as a function of the types of




- P. KOCKELMAN

:pammeters (number of moves, participants, and adjacency pairs) but,
- given a set of parameters, we can see how the complexity of discourse
' varies as a function of the values of the variables (p, g, 8). Moreover, as
~ linguists, psychologists, and anthropologists, we may see how the
parameters and variables depend on various properties of communicative
systems, cognitive processes, and social contexts. This opens a large-scale
empirical and comparative project, whose overarching goal is to examine
the conditions for, and consequences of, various rnodes of meaningfully
organized complexity,

Before undertaking the analysis, a number of readily inteiligible
disclaimers should be made. First, when speaking of the complexity of a
conversation, no attention is being paid to the content, size, or medium
of a given move. All that counts are the types of moves made, from the
standpoit of the kinds of actions undertaken: question and answer,
command and undertaking, offer and acceptance, announcement and
assessment, complaint and remedy, etc. The actual content (what is said
or done), length (how long it takes to say or do), or medium (be it an
utterance, gesture, facial expression, or physical action) is not at issue.
The approach outlined here is thereby designed to apply to any form of
interaction - sports, games, dances, markets, Nevertheless, the account of
grammatical constructions outlined in the previous sections (especially
Section 1.2) may easily be extended to include lexical constructions;
and such an account of lexico-grammatical constructions may be
combined with this account of discourse patterns. For example, to join
this analysis with that of scholars interested in the relation between
discourse and grammar (Du Bois, 2003; Sachs et al., 1974, p. 702; Ochs
et al., 1996; inter alia), one could examine the ways various turn-
constructional units (be they sentential, clausal, phrasal, lexical) are used
to constitute moves, and the way various grammatical categories (person,
number, case, etc.) and lexical categories (nouns and verbs) are used to
constitute turn-constructional units. In this way, a more extended
analysis can be used to account for the meaningful content of the moves
at issue.

Second, just as moves may be positioned relative to other moves, as
part of a coherent sequence of action, moves may also be positioned
relative to a stretch of talk itself, such as opening and closing brackets,
greetings and goodbyes, and so forth (Duranti, 1997; Schegloff & Sachs,
1973; Schegloff, 1986). While these are not treated here, they are often the
most organized part of a conversation, and the analysis could easily be
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extended to include them. Indeed, as will be taken up in Section 2.5, while
the analysis here is focused on the ordering of moves into coherent
sequences, one could use similar techniques to account for the ordering
of sequences into coherent conversations. This is a crucial point: just as
the analysis may be extended “downwards”™ into the grammatical and
lexical content of moves, the analysis may also be extended “upwards”
into the patterning of sequence types into conversations.

Third, in this model a turn — as a single stretch of talk in which a
particular participant makes one or more moves - is not an independent
variable (cf. Schegloff, 1996). However, how many turns there are in a
conversation, and how many moves such turns consist of, may be
calculated as a statistical property (in terms of averages and dispersions)
from the other variables considered here. For example, if one knows the
probability that a participant makes a specific number of moves in a
conversation of a particular length, one has information about the
average length (in terms of moves) of the participant’s turns — with the
assumption that sequential moves by the same speaker constitute a single
turn. More generally, there is all sorts of statistical information that
could be calculated (given the probability distributions to be derived),
but which will not be considered (given the focus of this essay).

Fourth, just as simultaneously unfolding subsystems may be corre-
lated, so may sequentially unfolding subsystems. For example, the
probability that a tipsy sailor moves to the right or the left may be a
function of the last move the sailor made (or the last two moves, or the
last three moves, etc.). For present purposes, such correlations are
incorporated insofar as first pair-parts condition second pair-parts, no
matter how tenuously conditioned or delayed. More complicated kinds
of correlations, requiring mathematical analysis of Markovian processes,
will not be treated here.

Fifth, the other range of issues for which conversational analysis has
been so successful — such as the repair of mistakes and the overlap of
turns — are not treated here at all (cf. Jefferson, 1984; Schegloff,
Jefferson & Sachs, 1977); though certain aspects of repair, as evinced in
the discourse example given above, are readily tractable via embedded
sequences. Moreover, while there are a range of moves which do not
make responses relevant, and hence fall out of an adjacency-pair format
(Schegloff, 2004, pp. 10-11), these are not treated here either. The
techniques described in Section 2.2, however, may readily be used to
incorporate them.
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That said, conversational analysis has had a distinguished career for
over 30 years, providing a theoretically sophisticated and empirically rich
approach to the analysis of conversation. From its beginnings, it has been
mterested in the relation between context-sensitive and context-free
forms of organization, turning on distinctions similar to parameters and
variables. And, in the tradition of George Herbert Mead and Erving
Gofiman, it has been particularly successful in modelling such patterns of
sequentially coherent actions. As Schegloff (2004, p. 8), one of its
forefathers, stresses: '

If we ask how actions and courses of actions get organized in talk in
interaction, it turns out that there are a few kernel forms of
organization that appear to supply the formal framework within
which the context-specific actual actions and trajectories of actions are
shaped. By far the most common and consequential is the one we call
“adjacency pair based”.... The simplest and minimal form of a
sequence is two turns long: the first initiating some kind of action
trajectory — such as requesting, complaining, announcing, and the like,
the second responding to that action in either a compliant or aligning
way (granting, remedying, assessing and the like, respectively) or in a
disaligning or non-compliant way (rejecting, disagreeing, claiming
prior knowledge and the like, respectively).

It is precisely these adjacency pairs ~ as the most common and
consequential kernel forms of organization — that are at issue in the
following sections.

2.1 The Simplest Model: Two Participants, Two Adjaceney Pairs

For the moment, set aside the issue of who makes a move (participant 1
versus participant 2); and set aside the issue of which kind of move is
made (question versus command). Focus instead on whether a move is a
first pair-part (either a question or a command) versus a second pair-part
(either an answer or an undertaking). Assuming that no sequence may
end until all first pair-parts have been responded to by second pair-parts
(that is, all questions are answered and all commands are undertaken), a
given sequence can only have an even number of moves: N=2, 4, 6, 8,
etc. This is the first key constraint — and it is built directly into the model.
The second key constraint is even more basic: as their name implies, first
pair-parts always precede second pair-parts {either immediately, or with
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some delay). That is, an answer to a question never precedes the question;
and an undertaking of a command never precedes the command.

Notice that neither of these constraints was present in the random-
walk model introduced in Section 1.3. They are equivalent to a random
walk that must always take an even number of steps, and a random walk
in which no steps to the left can occur uniess there has already been at
least as many steps to the right. More graphically, they are equivalent to
a random walk that must always return to the origin, and a random walk
that never strays to the left of the origin. The only issue that is left to
chance (or “choice” as the case may be), and hence the only open
variable, is whether a second-pair part immediately follows a first pair-
part (e.g. a question i3 immediately responded to with an answer), or
whether embedding occurs, such that a first pair-part is responded to by
another first pair-part {e.g. a question is responded to with a question,
and is only answered after this intermediate question has been answered).
When such an embedding occurs - and there may be more than one such
embedding in a row — there is a delay, consisting of some number of
moves, between a first pair-part and its second pair-part. In the case of an
actual random walk (which must always return to the origin, and which
can never stray to the left of the origin), this is equivalent to asking
whether a step to the left immediately follows a step to the right, or
whether some number of steps to the right can intervene.

For example, in a sequence of two moves (when, for the moment, we
are still not considering the number of participants or the types of
adjacency pairs), there is only one “path” through the space of possible
moves: the first move is a first pair-part and the second move is a second
pair-part (in response to the first move). For a conversation of four
moves, there are two paths: either there is no embedding such that the
first move is first pair-part, the second move is a second pair-part (in
response to the first move), the third move is a first pair-part, and the
fourth move is a second pair-part (in response to the third move); or
there is a single embedding such that the first move is a first pair-part, the
second move is a first pair-part, the third move is a second pair-part
(in response to the third move), and the fourth move is a second pair-
part (in response to the first move). Figure 2.1 diagrams these results for
N=2,4,6, 8. As may be seen, such paths always return to the origin {(all
first pair-parts are responded to by second pair-parts), and never cross
the origin (second pair-parts are always responses to first pair-parts).
(The boxed portion of Figure 2.1 [where N =6 and N = 8] shows a type of
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Fig. 2.1. Types of embeddings for sequences of different lengths.

path that will not be considered here: the unfolding of moves at a
particular level of embedding.)

As may be intuited from these diagrams, the embedding dimension
of a sequence has a random-walk structure, which is subject to two
constraints. Its distribution is given by the following equation

m

) = (V57 )enta - e @)

which is normalized, such that

& . & N/2 -1 " N{2wm
Z Wy(m) = Z W(m) = " g"(1 —¢) =1, (2.2)
nr=(} m=(} '

Compare Equation (1.15) and Equation (1.17). Here N denotes the
number of moves in the sequence (and may range from 2 to infinity,
counting even numbers only), ¢ denotes the probability that an
embedding occurs (and ranges from 0 to 1), and m denotes the number
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of embeddings that may occur in a sequence of N moves (and ranges
from 0 to N/2 — 1).

For example, when N =2, m =0 and Wa{m)=1 (there is no possibility
of embedding for a sequence with only two moves). When N=4, m=0
and Wi(m)==1 — ¢, or m=1 and Wy(m)=¢, (one type of sequence with
four moves has no embedding, and another type has one embedding).
When N=6, m=0 and Wp(m)=( — ¢)*, m=1 and W) =2 (1 — ),
or m=2 and Wy(m)=2¢* (one type of sequence with six moves has no
embedding, another type has one embedding, and another type has two
embeddings); and so forth. Recall Figure 2.1. Note that each of these is
normalized, and so when one adds up all the probabilities of different
types of sequence (of a given length), the result is unity. And note that,
when e <1, any probabilities which involve higher and higher order
powers of ¢ (such as &2, &, etc.) become vanishingly small. Thus, the fact
that embedding may occur to any degree (given the types of parameters)
does not mean that multiple embeddings are necessarily likely (given the
values of the variables). The presence of the factor N/2 instead of N is due
to the constraint that we are only considering sequences with an even
number of moves; and the presence of the factor N/2 — 1 is due to the
fact that the first move of any sequence is necessarily a first pair-part
(neither responding, nor embedding, is an option). Otherwise Equation
{2.1) is identical to Equation (1.15).

Finally, as already intimated, one suspects that the variable z is
relatively small for most sequences: that is, sequences are relatively
organized with respect to this parameter, as evinced by their being “flat”
rather than “embedded”. However, as a function of the sequence in
question, and the type of conversation in which the sequences occurs, the
degree of preference may be altered by adjusting the value of & The
smaller the value of the variable ¢, the more a sequence is organized with
respect to this parameter, the less likely a sequence is to embed, and
hence the less likely a sequence will exhibit the “higher-order™ patterns
depicted in Figure 2.1.

Before calculating the complexity of a sequence described by this
probability distribution, we need to include the two parameters (and
variables) left out of the preceding discussion: the probability that one
participant takes the fioor, rather than another (where there are two
participants); and the probability that a given move is a question rather
than a command (where there are two types of adjacency pairs). Assuming
that neither of these parameters is dependent on the other, nor on the
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degree of embedding, they can each be modelled as random walks. In
particular, anytime the floor is open, one participant or the other can take
it, and anytime a move is made (which is a first pair-part), it can be a
question or a command. Here then we are in the realm of the tipsy
sailor who has to make three choices with every step: whether to go to the
left or the right (embed or not), whether to adjust his cap or tighten his belt
(participant 1 or participant 2), and whether to sing or shout (question or
command). Incorporating Equation (2.1), and with analogy to Equation
(1.25), the probability distribution that describes such sequences is

Wx(m,r,s) = (N/z - 1)8”’(1 - e:)N/?»lem(N(z)

1 I

x (1 “P)N/zm"(NS/Z)q‘(i — gy (2.3)

which is suitably normalized, such that

Z Z Wy(m,r,s) =1 (2.4)

Here ¢ denotes the probability that a move is embedded (as before),
p denotes the probability that the move is made by participant | (versus
participant 2), and ¢ denotes the probability that the move is a question
(versus a command). The summations (over participants and adjacency
pairs) also only goes up to N/2 because, by the constraints built into the
model, only first pair-parts and floor-takers are open to chance (or
choice); second pair-parts and addressees (regardless of how long they are
deferred due to embedding), are always ultimately determined by first
pair-parts and speakers. It should be emphasized that Equation (2.3)
denotes the probability that a sequence of N moves will have m embedded
moves (and N/2 — 1 — m non-embedded moves), r moves initiated by
participant | (and N/2 — r moves initiated by participant 2}, and s
questions (and N/2 — s commands). It does not tell us where the
embeddings occur, or which moves are made by participant 1, or which
moves are questions. Averages and dispersions, as well as any other
statistical information, may be caleulated from this distribution using the
analogues of Equation (1.18) and Equation (1.19).
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With one caveat (regarding the unfolding of moves at a particu}ar level
of embedding, as per the boxed portions of Figure? 2.1), the discourse
patterns modelled by Equation (2.3) may be geometrically .represe'nted by
Figure 2.2. In particular, any sequence starts off at the. centre point. The
first move made may be a question or a command, and it may be made by
participant 1 or participant 2. Hence, there are four paths that may be
taken from the centre point (to a nearby radial point), each with a
different probability depending on the values of p and ¢. If the sequence
consists of only two moves (N == 2), then the second move mt.lSt bea retgrn
to the centre point from one of the first proximal radial points (of which
there are four): a question asked by participant I is answered by
participant 2, a command given by participant 2 is undertaken by
participant 1, and so forth. If the sequence consists of only fc?u-r moves, the
first move is just as before: say, a question is asked by participant 1. The
second move may either be an answer to that question by participant 2,. or
it may be a question or command by participant 2. {thus an embedding
with a change of speaker), or it may be a question or command b.y
participant 1 (thus, an embedding without a change m‘speaker). In this
way, the second move may either return the conversation Lo th_e centre
point, or it may radiate out again to a second—most. proximal radial point
(of which there are 16, in total, rather than four). If it returns to the centre,
then it can repeat itself: one participant or the other takes the floor, and
the move made is either a question or command; and, if it moves out to a

Fig. 2.2. Fractal embedding of conversational patterning.
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more radial point, given the fact that the conversation is only four moves
long, the next two moves must bring it back to the centre point again: the
se;cond first-pair part is given a response; and then the first pair-part is
given a response.

With the addition of more types of adjacency pairs, Figure 2.2 may be
extended by adding more lines radiating out from any point. That s, by
changing the number of parameters, one changes the number of “spokes”.
For example, if there were three types of adjacency pairs rather than
two, each point would have six spokes radiating out from it. Moreover,
with the tweaking of probabilities, the types of paths taken through this
space tend to cluster in one portion or another. That is, by changing the
vatue of the variables, one changes the amount of “skew”. For example if
p, g and & were all nearly 0, then most sequences would take place on
one spoke, in between the centre point and the first most proximal radial
point. Qualitatively speaking, the more spokes, the greater the maximum
complexity of a sequence; and the more skewing, the greater the organi-
zatiqn of a sequence. A sequence whose actual complexity is close to its
maximum complexity, and hence one which is minimally organized, is one
in which the entire space allotted is readily filled.

As may be seen by Equation (2.3), this distribution is given by the pro-
duct of three binomial distributions (which should make sense: the three
parameters are independent of each other, or uncoupled). The compiexity
of such a distribution, by analogy with Equation (1.20), is given by

Nj2~1 N/2 NJ2

Cile,ps) = 3 3" Wylm,r,8)logy Wy(m, r,s). (2.5)

=l = s=(

While one may calculate these values directly (for ¢ = p=q=1/2,1/10,
1/100), it is worthwhile using the Gaussian approximation in order to
th;ain an analytic solution. Thus, in analogy with Equation (1.21), in the
limit of (N/2~1) ¢ (1 ~&)»1, (N2) p (1 —p)>1, and (N/2) ¢
(I - ¢)>» 1, Equation (2.3) may be approximated by

W{(N,m,r,s) = exp T7- AT eXp 2N
V2r(N/2 = T)e(1' = &) 1/ 2n(N/2)p(T = p)
exp TV2{T-q]

(2.6)
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Finally, we may use this Gaussian approximation to obtain an analytic
result which describes the complexity of discourse patterns generated by
this model, and hence approximates the solution to Equation (2.5). In
analogy with Equation (1.27), we arrive at

C(N,&,p, q) = logy /2me(N/2 = 1)&(1 — 8}/ 2me(N/2)p(1 - p)
X +/2re(N/2)¢(1 — q). (2.7)

This is an elegant result: the complexity of this distribution
is essentially equal to the logarithm of the product of the root-mean-
square deviations of the three Gaussians whose product makes up the
distribution.

More generally, given the fact that log(4d x B x C)=log(A) + log(B) +
log(C), this shows that the complexity of the sequence is simply the sum
of the complexities of each separate dimension (embedding, participants,
adjacency pairs). Compare the complexity of a construction of
independent paradigms which was equal to the sum of the complexity
of the paradigms, as was given in Equation (1.13); and compare Equation
(1.27). Moreover, each of these complexities is essentially just the
iogarithm of the root-mean-square of the Gaussian distribution that
describes the dimension at issue. In other words, insofar as the variables
were uncoupled

C(N,&,p,q) = C(N,&) + C(N,p) + C(N, q}. (2.8)

Finally, as may be seen, the complexity is maximum when the
probability (or relative frequency) of embedding is 1/2, when the
probability that participant 1 takes the floor is 1/2, and when
the probability that a first pair-part is a question is 1/2. That is, the
complexity is maximum when the probabilities of all possibilities {embed
versus non-embed; participant 1 versus participant 2; question versus
command) are equal. Organization, or the difference between maximum
and actual complexity, therefore increases as there is any asymmetry
between participant 1 and participant 2, between questions or
commands, between embedding or non-embedding. This should make
sense: a highly organized (and hence relatively predictable) sequence is
one is which one participant (rather than another) usually takes the floor,
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in which the move made by that participant is usually a question (rather
than a command), and in which the response is always an immediate
answer (rather than some dispreferred move by way of an embedding).
Imagine a master testing the knowledge of an acolyte, or a corporal
barking out commands to a private. That is, social hierarchy (and any
kind of institutional regimentation more generally) decreases conversa-
tional complexity. In short, Goffman’s notion of ritual and system
constraints (1981) could not be better named: the more constraints we
place on a system, the more organized the system, the less complex the
system.

To this simple model of discourse patterns we may add any number of
parameters and variables. For example, we could take into account the
caveat mentioned in the previous section, and thereby allow conversa-
tions to unfold at any level of embedding. We could allow the number of
adjacency pairs to vary. And we could increase the degree of resolution,
and allow the various parameters to couple. In the next two sections, we
will treat the number of moves (N) as a variable, itself governed by a
probability distribution. And we will take into consideration a cost-
benefit analysis, such that complexity is maximized while length is
minimized. The point is not to carry out any of these additions in
exhaustive detail, but merely to show how easily additions can be made
to this model, such that it may be extended to any degree of theoretical
sophistication and empirical richness.

2.2 Scaling Up and Down the Analysis to Include Any Other Stochastic
Variables
In all the random-walk models used so far, the number of moves (or
length of the sequence), has been an independent variable, one not itself
subject to a probability distribution. This has allowed us understand
how the complexity of a sequence varies with the length of a sequence,
usually as slowly increasing logarithmic function. In this way, the
length of a sequence has been outside of statistical considerations. What
we would like to do now is treat the number of moves in a sequence
(N), and/or the length of a conversation more generally (when it can be
treated as a single sequence), as itself governed by a probability
distribution,

For example, suppose we want to calculate the complexity of
conversations between telephone operators and customers. In such a
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scenario, we still need to know the usual information: the number of
participants, and probability each of them speaks; the number of
adjacency pairs, and the probability they are used; the probability that
embedding occurs; and so forth. That is, we still need a means of
calculating the complexity of a conversation (or sequence within a
conversation} with N moves, as governed by some set of parameters
and wvariables. In addition, we now need to know some extra
information: the probability that, of all the conversations between
telephone operators and customers, any given conversation has a
certain number of moves, or lasts a certain length. For example, the
conversations between operators and customers might follow a
Gaussian distribution: say, on average, conversation are 30 moves
long; and there is some reasonable bell-shaped width of conversations
around this average (say, pius or minus 10 moves);, but for most other
lengths the probability is relatively small. Or, as will be taken up in the
next section, it might be the case that, for example, in long-distance
phone calls, the probability distribution follows a Boltzmann- or Zipf-
iike law: exponentially decreasing probability with increased length of
conversation. In short, the details of the probability distribution itself
are not so much at issue; what matters is that the length of
conversations within some set of conversations (however bounded or
defined) is governed by one.

Assuming we have a probability distribution P(N), which describes
the relative probability that a conversation has N moves, and assuming
we know how to calculate the complexity C(N) of a conversation of N
moves (through the usual methods, described in previous sections), we
can calculate the complexity of a set of conversations governed by
these two distributions. Note, then, that what is at issue 18 not the
complexity of a conversation per se, but the complexity of a fieid of
conversations, the complexity of a genre of discourse: all calls between
operators and customers; all sales at a particular store; all job
interviews at a particular company; all confessions in a particular
parish; and so forth. As demonstrated in the appendix, the complexity
of such a field of conversations may be calculated using the following
equation:

C=_P(N)C(N) = P(N)log, P(N). (2.9)
N

N
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Here the summation N is over all possible lengths of conversation
(say, N=2, 4, 6, 8, etc.); we are assuming that P(N), as the probability
that a conversation has a length o, is suitably normalized; and we are
assuming that C(N), as the complexity of a conversation of length N,
has been adequately calculated. While Equation (2.9) may look
strange at first, it has a very simple interpretation: the complexity of
the field of conversations is just the average of the complexities (within
that field) plus the complexity of the distribution (which. governs that
field).

Suppose, for example, that conversation length is governed by a
Gaussian distribution whose average length is N,,,, and whose dispersion
is Ny, And suppose that the conversations themselves may be
described by our simplest model, using Ca(e, p, ¢) from Equation (2.5).
Using Equation (2.9), the complexity of this field of conversations is
therefore given by

. 2 {N‘«JVmg )2 o 2 (;\;Ang)z
X exp b1 s X CKP s
C(N P ;NI' = CN &
avg tw) Z:O ( P Q) m Z 2N i
- 1\'»~N;u'g)2
< 1o 2xexp 2.10
& e .

Here the summation only counts over even N (which explains the
factor of 2, which is required for normalization); and, while this
summation may include conversations of any length (up to N = infinity),
after a certain point the probability of a conversation with large N
becomes vanishingly small — and hence the summation can be terminated
at any convenient place (given the values of N,,, and N,). The first term
on the right of Equation (2.10) is just the average complexity of a
conversation within the field of conversations; and the second term on
the right of Equation (2.10) is just the complexity of the probability
distribution which governs that field. Crucially, such a field of
conversations has a maximum complexity when the complexity of any
conversation of length N is maximum (the variables ¢, p, and ¢ would alj
be equal to 1/2); and when the probability that a conversation has length
N is proportional to the relative complexity of a conversation with length
N (that is, the more complex a conversation, the more probable a
conversation).
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The foregoing considerations are much more general than they seem.
In particular, rather than consider the length of a conversation to be
governed by some probability distribution, we may consider any
parameter or variable of the model to be governed by a probability
distribution. In particular, suppose now that within some larger set of
conversations, various subsets of this set occur with a certain
probability — where each subset may be modelled by particular types of
parameters, and particular values of variables; and suppose that some
probability distribution governs the probability that a conversation
within the larger set is confined to one of the subsets (and hence may be
described using the types of parameters and values of variables
appropriate to that subset). In short, rather than the subsets being
conversations with particular lengths (as just described), the subsets can
be conversations with different probabilities of embedding, different
numbers or kinds of adjacency pairs (with different probabilities of
usage), different numbers or types of participants (who themselves might
correfate with different probabilities of embedding, or different prob-
abilities of using adjacency pairs), and so forth. For example, such a
probability distribution might govern what kinds of participants are
involved in a conversation, as a function of sociological categories such
as gender, age, occupation, and so forth; and such sociological categories
might correlate with different values of variables. Or, such a probability
distribution might govern the kind of discourse genre that unfolds: from
chatting to board meetings, from lectures to scoldings — where such
genres are themselves describable with different types of parameters and
values of variables.

As mentioned in the caveats of Section 2.1, a particularly important
type of subset has been implicitly assumed all along. In particular, the
models were designed for understanding the sequencing of moves. Hence,
while the preceding discussion has sometimes been couched in terms of
“conversations of a particular length”, we have been glossing over the
ways in which conversations often consist of relatively ordered
sequences — not just opening sequences (such as grestings), “guts”, and
closing sequences (such as goodbyes), but also all the various twists and
turns that the “guts” may hold. In other words, just as we may account
for the distribution of lexical and grammatical categories within moves,
and just as we may account for the distribution of moves within
sequences, we may also account for the distribution of sequences within
conversations. In particular, different types of sequences may have
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different types of parameters and different values of variables. Their
length may be subject to different probability distributions and the
number, type, and ordering of sequences within a conversation may be
analysed in terms of a random-walk model. In short, this framework
allows us to scale up or down the analysis to any degree of resolution,
and take into account any frame of relevance. Such iterative applicability
is where this measure of complexity, and this model of conversation, gets
its real power.

In each of the examples just offered, then, we can use the genemhza{:on
of Equation (2.9). In particular, for any set of conversations composed of
subsets, the complexity of the set is given by the average of the
complexities (of the subsets), plus the complexity of the distribution (of
the subsets). Formaily, this may be stated as follows: anytime we know

‘the complexity of various subsets (C', C?, 3, ..., C™, and we know the

probability (or relative frequency) that the overall set is confined to one
of its subsets (such that Py + Pr+ P3; +...+ P,=1), then the actual
complexity of the overall set is given by

Cleardtdi = N " pCf = > " Pilog, . (2.11)
= fa ]

Equation (2.11) is just the generalization of Equation (2.9). It allows our
calculations of complexity to be used iteratively - not just applicable to
subsets within a set, but also to sub-subsets within a subset, and so
forth — up and down to any degree of resolution, such that any and all of
the foregoing issues may be considered at once.

2.3 Conclusion: Adding Economic Constraints to Models of Conversation
Perhaps more interesting than a Gaussian distribution, as modelled in
Equation (2.10), is a Boltzmann- or Zipf-like distribution, as derived via
microeconomic considerations. In particular, suppose that conversation
length is governed by the following three considerations.

First, the larger the complexity of a conversation the better — from the
standpoint of information transmission, social networking, “face-time”,
and so forth. That is, we would like to maximize the average comp[emty
of a conversation.

Second, the shorter the length of a conversation the better — from the
standpoint of clock-time, money, efficiency, and so forth. That 18, we
would like to minimize the average length of a conversation.
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Third, complexity and length come with commensurable “costs”
(or “benefits”), such that complexity is positively valued by some variable
(Qc > 0), and length is negatively valued by some variable (9, < 0). In
other words, what we are really trying to do is maximize the function

U= QCC+QLZP N)N = QC(ZP NYC(N ZP )log, P N))
+01 Y P(N)N. (2.12)
N

The first term on the right of the first equality in Equation (2.12) is just
the (positive) value of complexity times the amount of complexity; and
the second term on the right of the first equality in Equation (2.12) is
just the (negative) value of length times the average length. The first term
on the right of the second equality in Equation (2.12) merely. incorporates
Equation (2.9). P(N) is subject to the usuai normalization constraint,
such that

S PNy =1. (2.13)

The complexity of a conversation of a given length, C(¥), may be
calculated however one chooses (given the types of conversations one is
studying). For present purposes, we will use Equation (2.7), which
follows from the Gaussian approximation to the simplest conversational
patterns. As derived in Appendix B, the probability distribution P{N)
which satisfies these requirements is

P(N)= K\/(2ne{N/2 — 1)e(1 —&}) (2ne(N/2)p(1 — p)) (2ne(N/2)¢(1 - ¢))
e EQL/QCN. (2.14)

The first term in this equation is just a constant, which is to be
determined by the normalization constraint given in Equation (2.13). As
may be seen by comparing Equation (2.14) with Equation (2.7), the
second term is just the product of the three root-mean-square deviations
underlying the simplest conversational patterns. This term is a slowly
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increasing function of N. The third term is the important term. Given the
fact that Q, is negative and Q. is positive, this describes a rapidly
decreasing function of N. Indeed, this is an exponentially decreasing
function of N, and hence quickly cancels out the second factor. In short,
for smali N, P(N) is an increasing function (with the second term
dominating); and then for large N, P(N) is a rapidly decreasing function
{with the third term dominating). As may be seen in Figure 2.3, the degree
to which this domination takes place is a function of the ratio between Q.
and Q. When this ratio is — 0.2, the average length of a conversation is
about 19 moves, and the complexity is 4,30 bits; when this ratio is — 0.1,
the average length of a conversation is about 37 moves, and the
complexity is 5.33 bits; and when this ratio is — 0.05, the average length of
a conversation is about 73 moves, and the complexity is 6.34 bits. In short,
the more complexity is (positively) valued, the less rapidly the function
decreases (such that conversations with longer lengths are more probable)
and the more length is (negatively) valued, the more rapidly the function
decreases (such that conversations with longer lengths are less and less
probable).

While Equation (2.14) was exemplified using the model of conversa-
tional complexity given by Equation (2.7), it is much more general than
that. In particular, given any model of conversational complexity which
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provides some function C(N), and given similar cost-benefit considera-
tions, the probability distribution which satisfies all the above constraints
may be represented as

0
P(N) = K x 260 5 2 o, (2.15)

What is so special about Equation (2.15) is not the details of the
probability distribution per se; rather, it is the fact that we have
theoretically derived a probability distribution (rather than bhaving
empirically observed it, as all the preceding analysis has presupposed).
This theoretical derivation turns on the calculus of variations (the
maximization or minimization of certain functions) as applied to
microeconomic considerations (the costs and benefits of various values
of variables and/or types of parameters). The costs and benefits, needless
to say, need not be economic (such as those constraining how long the
average cell-phone conversation is, depending on the typical provider and
plan); but may, rather, turn on cultural values (politeness norms, status
hierarchies, etc.), cognitive processes (such as limits on attention,
memory, information-transmission, etc.), and so forth. Here, then, is a
key locale where value (in the widest sense) enters the model, thereby
providing a central constraint on, and condition for, the meaningful
organization of conversational complexity.
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Suppose that the probability that the system is found in one of its n
subsystems is given by

P= (P, Py, -, Py} {A.3)

which is suitably normalized, such that

M
S op=1. (A.4)
=1

Then the complexity of the total system is just

I

C1#2en NN ppllog, PP, (A.5)

J=1

This reduces to

APPENDIX A: THE DERIVATION OF EQUATION (2.9 AND ., p _
Clraetn Z Z PjPij log, Pj— Z Z P;P!log, Pl (A.0)
J=1 0 =1

EQUATION (2.11)

Suppose a system is composed of # subsystems, each of which has a
complexity given by

Given the normalization constraints, Equation {A.3) and Equation (A 4),

Cl=- z\: P; log, P| this reduces to

C2 == — E P? log?, P;z Cl+2+m+“ _ n PICJ ~ leogz Pj’ (AT)
f . ’ .

(A 1) =1 J=1

and Equation (A.7) is equivalent to Equation (2.11). Finally, by treating

C" =% Pllog, P! . .
Z o Pras P(N) and ¢ as C(N), one recovers Equation (2.9).
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APPENDIX B: THE DERIVATION OF EQUATION (2.14) AND
EQUATION (2.15)

Let Q¢ be constant which denotes the positive value of complexity, such
that Q¢ > 0. Let O, be a constant which denotes the negative value of
length, such that Q; < 0. Let Py be the probability that a conversation
has length N. And let Cyy be the complexity of a conversation of fength N,

taking into account whatever parameters and variables are relevant.
Following Equation (2.12), we seek to maximize the function

U=QcC+QLY> PyN
N

= Qc (Z PyCy= Pylog, va) +0L> PyN (B
N N N

subject to the constraint that

> Py=1. (B.2)
N

Using the method of Lagrange multipliers, the Lagrangian is given by
L=Q¢ (ZPNCNWZPMogQ PN) +Q1Y PyN+u (ZPN~— 1) (B.3)
N N N N

(We are assuming that Cy is not a function of Py.) Lagrange's theorem
says that an optimal choice of P={P}, P,,..., Py} must satisfy the N+ 1
first-order conditions

AL 1
"‘é‘P“_]“““QC CN_Engpl—m + O N+oa=0
aL 1
2 =0c| Cy—log Pr—— |+ O N+a=0

OP; In2

(B.4)

aL ' 1
_“““:QC<CNWIOg2PN“%)+Q[_,N”’f”'0€m0
N In2

oL
— =y Py—1==0
o
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The last of these is just the initial constraint, Equation (B.2). And each of

the others reduces to

Ly e L a2 N (BS)
logzP,-w—Q—ENerQC-FC, inZ’ff )

This reduces to

P,-ngféNxf‘xZQLc'xzﬁ"%, fori=12,---, N {B.6)

Setting the second two terms equal to the constant K, Whose value ils tlo
be determined by the normalization constraint, Equation (B.2), this is

equal to

P= Kx 2% fori=1,2, -, N (B.7)

i = = i 1 to any number,
Letting P;= P(N) and C;= C(N), letting N range {from '
this is equivalent to Equation (2.15), and taking C(N) from Equation
(2.7), this reduces to Equation (2.14).




